Large language models reduce agency costs


With Jason Potts, Darcy W E Allen, and Nataliya Ilyushina. Available on SSRN.

Large Language Models (LLMs) or generative AI have emerged as a new general-purpose technology in applied machine learning. These models are increasingly employed within firms to support a range of economic tasks. This paper investigates the economic value generated by the adoption and use of LLMs, which often occurs on an experimental basis, through two main channels. The first channel, already explored in the literature (e.g. Eloundou et al. 2023, Noy and Wang 2023), involves LLMs providing productive support akin to other capital investments or tools. The second, less examined channel concerns the reduction or elimination of agency costs in economic organisation due to the enhanced ability of economic actors to insource more tasks. This is particularly relevant for tasks that previously required contracting within or outside a firm. With LLMs enabling workers to perform tasks in which they had less specialisation, the costs associated with managing relationships and contracts decrease. This paper focuses on this second path of value creation through adoption of this innovative new general purpose technology. Furthermore, we examine the wider implications of the lower agency costs pathway on innovation, entrepreneurship and competition.