Regulate? Innovate!

Suddenly, we live in a world of policy dilemmas around social media, digital platforms, personal data, and digital privacy. Voices on both sides of politics are loudly proclaiming we ought to regulate Facebook and Google. From the left, these calls focus on antitrust and competition law—the big platforms are too large, too dominant in their respective markets, and governments need to step in. From the right, conservatives are angry that social media services are deplatforming some popular voices and call for some sort of neutrality standard to be applied to these new ‘utilities’.

Less politically charged but nonetheless highly salient are the concerns about the collection and use of personal data. If ‘data is the new oil’—a commodity around which the global economy pivots—then Facebook and Google look disturbingly like the OPEC oil production cartel. These firms use that data to train artificial intelligence (AI) and serve advertisements to consumers with unparalleled precision. No more is it the case that 50 per cent of advertising is wasted.

These policy dilemmas have come about because the digital environment has changed, and it has changed sharply. Facebook only opened to the public in 2006 and by 2009 already had 242 million users. In the second half of 2019 it has 2.38 billion users.

Facebook is not just central to our lives—one of the primary ways so many of us communicate with family, friends and distant acquaintances—but central to our politics. The first volume of the Mueller investigation into Russian interference in the 2016 American presidential election focused on the use of sock-puppet social media accounts by malicious Russian sponsors. There’s no reason to believe these efforts influenced the election outcome but it is nonetheless remarkable that, through Facebook, Russian agents were able to fraudulently organise political protests (for both left and right causes)—sometimes with hundreds of attendees—by pretending to be Americans.

There always have been and always will be a debate about tax rates, free trade versus protectionism, monetary policy and banking, Nanny State paternalism, or whether railways should be privatised or nationalised. The arguments have been rehearsed since the 19th century, or even earlier. But we are poorly prepared not just for these topics of digital rights and data surveillance, but for new dimensions on which we might judge our freedoms or economic rights.

Private firms are hoovering up vast quantities of data about us in exchange for providing services. With that data they can, if they like, map our lives—our relationships, activities, preferences—with a degree of exactness and sophistication we, as individuals, may not be able to do ourselves. How should we think about Facebook knowing more about our relationships than we do? Do we need to start regulating the new digital economy?

The surveillance economy

One prominent extended case for greater government control is made by Shoshana Zuboff, in her recent book The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power (PublicAffairs, 2019). For Zuboff, a professor at Harvard Business School, these new digital technologies present a new economic system, surveillance capitalism, that “claims human experience as free raw material for translation into behavioural data”.

Zuboff argues these new firms look a lot like the industrial behemoths of the 19th and 20th century. Google is like General Motors in its heyday, or the robber barons of the Gilded Age. Using Marxist-tinged language, she describes how firms claim the ‘behaviourial surplus’ of this data to feed AI learning and predict our future desires—think Amazon or Netflix recommendation engines.

More sinisterly in Zuboff’s telling, these firms are not simply predicting our future preferences, but shaping them too: “It is no longer enough to automate information flows about us; the goal now is to automate us.” Netflix can put its own content at the top of its recommendation algorithm; Pokémon Go players tend to shop at restaurants and stores near the most valuable creatures.

Where many people spent years worrying about government surveillance in the wake of Edward Snowden’s leaks about the National Security Agency, she argues NSA learned these techniques from Google—surveillance capitalism begets surveillance state. At least the NSA is just focused on spying. Silicon Valley wants to manipulate: “Push and pull, suggest, nudge, cajole, shame, seduce,” she writes. “Google wants to be your co-pilot for life itself.”

Harrowing stuff. But these concerns would be more compelling if Zuboff had seriously engaged with the underlying economics of the business models she purports to analyse. Her argument—structured around an unclearly specified model of ‘surveillance assets’, ‘surveillance revenues’, and ‘surveillance capital’—is a modification of the internet-era adage, “If you’re not paying for the product, you are the product”. Many services we use online are free. The platforms use data about our activities on those platforms to make predictions—for example, about goods and services we might like to consume—and sell those predictions to advertisers. As she describes it:

… we are the objects from which raw materials are extracted and expropriated for Google’s prediction factories. Predictions about our behaviour are Google’s products, and they are sold to its actual customers but not to us. We are the means to others’ ends.

 … the essence of the exploitation here is the rendering of our lives as behavioural data for the sake of others’ improved control of us.

This argument misses a crucial step: what is this control? For the most part, the product derived from our data that is sold to other firms is advertising space: banner ads on news websites, ads dropped into social media feeds, ads threaded above our email inboxes. Seeing an advertisement is not the same as being controlled by a company. The history of advertising dates back at least to Ancient Rome. We are well familiar with the experience of companies trying to sell us products. We do not have to buy if we do not like the look of the products displayed on our feeds. It’s a crudely simple point, but if we do not buy, all that money—all that deep-learning technology, all those neural networks, all that ‘surveillance’—has been wasted.

Two sided markets

So how should we think about the economics of the big technology companies? Google and Facebook are platforms; what Nobel-winning economist Jean Tirole described as ‘two-sided’ markets. Until recently the dominant market structure was a single-sided market: think a supermarket. A supermarket has a one-directional value chain, moving goods from producers to consumers. Goods are offered to customers on a take-it-or-leave-it basis. In a two-sided market, customers are on both sides of the market. The service Google and Facebook provide is matching. They want advertisers to build relationships with users and vice-versa. Since the first scholarly work done on two-sided markets, economists have observed platforms that take three or more groups of users and match them together.

Two-sided markets are not new, of course. Newspapers have traditionally done this: match advertisers with readers. Banks match borrowers with lenders. French economics professor Jean Tirole’s first work looked specifically at credit card networks. But two-sided markets dominate the online world, and as the economy becomes more digital they are increasingly important. When we try to define what is unique about the ‘sharing economy’, we’re really just talking about two-sided markets: AirBnB matches holidaymakers with empty homes, Uber matches drivers with riders, AirTasker matches labour with odd jobs. Sometimes single and two-sided markets co-exist: Amazon’s two-sided marketplace sits alongside its more traditional online store.

The economic dynamics of two-sided markets are very different dynamics to what we are used to in the industrial economy. They are strongly characterised by network effects: the more users they have on both sides, the more valuable they are. So firms tend to price access in strange ways. Just as advertisers subsidised the cost of 20th century newspapers, Google and Facebook give us free access not because we are paying in personal data but because they are in the relationship business. Payments go in funny directions on platforms, and the more sides there are the more opaque the business model can seem.

An ironic implication of Zuboff’s arguments is that her neo-Marxian focus implicitly discounts what most analysts identify as the two key issues around these platforms: whether these networks are harmful for privacy and whether they are monopolistic.

First, the monopoly arguments. In Australia the ACCC has been running a digital platforms inquiry whose draft report—released in December 2018—called for using competition law against the large platforms on the basis they have started to monopolise the advertising market. There are many problems with the ACCC’s analysis. For example, it badly mangles its narrative account of how newspaper classifieds migrated online, implying Google and Facebook captured the ‘rivers of gold’. In fact, classified advertising went elsewhere (often to websites owned by the newspapers, such as Domain).

Yet the most critical failure of the ACCC is its bizarrely static perspective of an incredibly dynamic industry. True, platform markets are subject to extreme network effects—the more users, the more valuable—but this does not mean they tend towards sustainable monopolies. Far from it. There are no ‘natural’ limits to platform competition on the internet. There is unlimited space in a digital world. The only significant resource constraint is human attention, and the platform structure gives new entrants a set of strategic tools which can help jump-start competition. Using one side of the market to subsidise another side of the market helps ‘boot-strap’ network effects.

Consumer harm is the standard criteria for whether a firm is unacceptably monopolistic. Usually this means asking whether prices are higher than they would be if the market was more contested. Given the money prices for these services are often zero, that’s hard to sustain. Nobody pays to use Google.com. At first pass the digital platform business seems to have been an extraordinary boost to consumer surplus.

But, again, platform economics can be strange. It is possible we are paying not with money but with personal data, and the role of a competition authority is to protect our privacy as much as our wallet. This is the view of the ACCC (at least in its December 2018 draft report) and has become an article of faith in the ‘hipster antitrust’ movement in the United States that competition regulators need to focus on more than just higher prices.

There is obviously a great deal to privacy concerns. In a recent book, The Classical Liberal Case for Privacy in a World of Surveillance and Technological Change (Palgrave Macmillan, 2018), I argued we currently are in an extended social negotiation about the value of privacy and its protection. But the privacy debate is characterised by a lot of misconceptions and confusions. Privacy policies and disclosures have not always been acceptable. Expectations are changing. Mark Zuckerberg would no longer get away with the reckless anti-privacy statements he made as a CEO when Facebook launched. The question is whether to wait for privacy expectations to shift—supplemented by the common law—or whether governments need to step in with bold new privacy regulation.

The experience with privacy regulation so far has not been great. The European Union’s General Data Protection Regulation presents the single most significant attempt to regulate privacy thus far. The GDPR, which became enforceable in 2018, requires explicit and informed consent of data collection and use, informing users about how long their data will be retained, and provides for a “right of erasure” that allows users to require firms to delete any personal data they have collected at any time. The GDPR was written so broadly as to apply to any company that does business with any European citizen, in practice making the GDPR not just a European regulation but a global one.

Early evidence suggests host of consequences unforeseen by the GDPR’s designers. Alex Stapp, at the International Center for Law and Economics, argues GDPR compliance costs have been “astronomical”. Microsoft put as many as 1,600 engineers on GDPR compliance, and Google says they spent “hundreds of years of human time” ensuring they follow the new rules globally. These firms have the resources to do so. One consequence of high compliance costs has been to push out new competitors: small and medium internet companies that cannot dedicate thousands of engineers to regulatory compliance. As Stapp points out, it’s not at all clear this trade-off for privacy protection has been worth it: regulatory requirements for things such as data portability and right of data access have created new avenues for accidental and malicious access to private data.

A peculiarity of the history of early-stage technologies is they tend to trade off privacy against other benefits. Communications over the telegraph were deeply insecure before the widespread use of cryptography; early telephone lines (‘party lines’) allowed neighbours to listen in. Declaring privacy dead in the digital age is not just premature, it is potentially counterproductive. We need sustained innovation and entrepreneurial energy directed at building privacy standards into technologies we now use every day.

The deplatforming question

One final and politically sensitive way these platforms might be exercising power is by using their role as mediators of public debate to favour or disfavour certain political views. This is the fear behind the deplatforming of conservatives on social media, which has seen a number of conservative and hard-right activists and personalities banned from Facebook, Instagram and Twitter. Prominent examples include the conservative conspiracist broadcaster Alex Jones, his co-panellist Paul Joseph Watson, and provocateur Milo Yiannopoulos. Social media services also have been accused of subjecting conservatives to ‘shadow bans’—adjusting their algorithms to hide specific content or users from site-wide searches.

These practices have led many conservative groups who usually oppose increases in regulation to call for government intervention. The Trump administration even launched an online tool in May 2019 for Americans to report if they suspected “political bias” had violated their freedom of speech on social media platforms.

One widely canvassed possibility is for regulators to require social media platforms to be politically neutral. This resembles the long-discredited ‘fairness doctrine’ imposed by American regulators on television and radio broadcasting until the late 1980s. The fairness doctrine prevented the rise of viewpoint-led journalism (such as Fox News) and entrenched left-leaning political views as ‘objective’ journalism. Even if this was not an obvious violation of the speech rights of private organisations, it takes some bizarre thinking to believe government bureaucrats and regulators would prioritise protecting conservatives once given the power to determine what social media networks are allowed to do.

Another proposal is to make the platforms legally liable for content posted by their users. The more the platforms exercise discretion about what is published on their networks, the more they look like they have quasi-editorial control, and courts should treat them as if they do. While this would no doubt lead to a massive surge in litigation against the platforms for content produced by users, how such an approach would protect conservative voices is unclear: fear of litigation would certainly encourage platforms to take a much heavier hand, particularly given the possibilities of litigation outside the United States where hate speech and vilification laws are common.

The genesis of this proposal seems to come from a confusion about the distinction between social media platforms and newspapers. Newspapers solicit and edit their content. Social media platforms do not. Social media platforms come from a particular political and ideological environment—the socially liberal, quasi-libertarian and individualistic worldview of Silicon Valley and the Bay Area—and these technologies now hold the cultural high-ground. The conservative movement has focused on trying to change Washington DC when it should have been just as focused on developing new ways for people to exercise their freedom, as has Silicon Valley.

But regulation cannot be the answer. Regulation would dramatically empower bureaucrats, opening up new avenues for government intervention at the heart of the new economy (any proposed regulation of Facebook’s algorithm, for instance, would lay the foundation for regulating Amazon’s search algorithm, and then any firm that tries to customise and curate their product and service offerings), and threatening, not protecting, freedom of speech. To give government the power to regulate what ought to be published is a threat to all who publish, not to just a few companies in northern California.

Platform to protocol economy

I opened this article with a discussion of how recent a development the platform economy is: a decade old, at best. A host of new technologies and innovations are coming that challenge the platforms’ dominance and might radically change the competitive dynamic of the sector. New social media networks are opening all the time. Many of those who have been deplatformed have migrated to services such as Telegraph or specially designed free speech networks such as Gab. Blockchain technology, for instance, is a platform technology as a decentralised (no single authorities, public or private, can control its use) and open (anyone can join) protocol.

Likewise, intense innovation focusing on decentralised advertising networks threatens Google’s ad sector dominance, and offers advertisers more assurance their digital dollar is used well. Other new technologies focus on regaining control over user privacy. Cutting-edge privacy technologies such as zero-knowledge proofs open massive opportunities for hiding personal information while still participating in economic exchange and social interactions. Blockchain applications are being developed to give users genuine control over data and facilitate the sort of private property rights over information the European Union’s GDPR awkwardly tries (and fails) to create.

The platforms know they face an uncertain and more competitive technological future. That is why Facebook is developing its own cryptocurrency—a pivot into financial services, like Chinese social media WeChat developing WeChat Pay. Google is investing serious resources into blockchain research, despite the technology’s long-run potential to displace its competitive advantages. The internet 10 years on will look very different—not because governments decided to regulate, but because digital entrepreneurs will have kept pushing, bringing us new products and services, revolutionising the global economy.

Facebook’s monetary revolution

With Sinclair Davidson and Jason Potts

With its new digital money, Libra, a Facebook-led global consortium has created the world’s first private international reserve currency.

Announced on Wednesday, this is no small thing. For the first time since the collapse of the Bretton Woods system there is a clear competitor to the US dollar for global dominance in the currency market.

For simplicity’s sake think of Libra as a return to the global gold standard. But rather than governments setting the rules and exchange rates, with gold being the underlying store of value, we’re seeing a private organisation setting the rules and a portfolio of relatively risk-free assets playing the role of gold.

To be clear – Libra is not a cryptocurrency like, say, Bitcoin; but it has many Bitcoin-like characteristics. It is a private money. It is not government money – ultimately fiat is backed only by the taxing powers of the state. Libra will be backed by tangible assets.

Rather than Bitcoin, Libra is more like PayPal, or WeChat Pay, on steroids – a payment gateway and a new money system all rolled into one. This is perhaps a good halfway house to introduce the world to the concept of non-government digital money.

The implications are huge. Facebook has disrupted digital money in a way central banks and the commercial banking system never could. Facebook has brand recognition that even the global banks must envy.

For those consumers who may baulk at using Facebook to transact, other large tech companies cannot be far behind with their own products. So what now?

We predict a large uptake in these digital money products. Largely because consumers tend to emphasise convenience. Libra will very quickly achieve global acceptance among consumers and merchants. If that prediction comes true, many other firms will launch their own competing monetary systems. In short, there is going to be a lot of competition in this space in the very near future.

The short-term consequences include the immediate disruption of the remittance market. Those companies charging exorbitant fees to move money around the world will see their rivers of gold drying up. Debit cards will also quickly become redundant – accelerating the move to phone-based tap and pay systems. The world’s “unbanked” will quickly become “banked”.

There are other immediate practical concerns. Within the next year, both Australian consumers and merchants will be wanting to use Libra. How will this be done? How will it be taxed? Will it be taxed? But any work that has been done so far on these questions has come in the context of Bitcoin and cryptocurrency – an extremely niche market. A general use private money has simply not been on the radar.

Those central banks that tolerate high rates of inflation will see disintermediation. Governments that pursue irresponsible fiscal policies will see even greater capital flight. Ironically the presence of a convenient, sound and private digital money will provide incentives to institutionally challenged governments to lift their game or lose total control over their domestic policy environments.

Every country in the world faces policy challenges from a viable private international reserve currency. Control over the monetary system lies at the heart of the modern economy. A viable alternative to fiat currency, with international mobility, undermines both the conduct of monetary policy and fiscal policy.

No doubt governments and their regulators will be looking very closely at Libra. They may treat it as a threat. But it is an opportunity for a forward-thinking government. It should come as no surprise that Libra is being set up in Switzerland. They have sensible laws relating to financial matters. The question we should be asking is why Australia isn’t being considered as a location for these products?

Australia should consider becoming a currency haven. Not only should a suite of policies be developed that facilitates the use of a private international reserve currency within Australia, a suite of policies that attracts the providers of such currencies to Australia should be considered. The use of Australian markets to purchase the underlying assets should encouraged and especially the inclusion of Australian assets in those portfolios should be encouraged.

With the announcement of Libra, the global monetary system – and arguably the structures of global financial capitalism – changed irreversibly. And just 10 years after the invention of Bitcoin and blockchain technology. The rate of disruptive innovation is only going to accelerate.

How well Australia adapts to this change will be determined over the next six months. Libra is coming in 2020. Regulatory obstruction is simply not an option.

Blockchain and the manufacturing industry

With Darcy Allen and Jason Potts

Bitcoin was invented in 2008 by Satoshi Nakamoto as a censorship-resistant cryptocurrency built for the internet. With regular fiat money centralised bodies such as banks and governments control the records of who owns what. For bitcoin those records are held in a decentralised blockchain. Blockchains are updated and maintained by a decentralised network. To ensure the transactions and records are correct, economic incentives to continually drive the blockchain network towards consensus.

Applications of blockchain extends beyond records of money. We rely on trusted third parties to maintain our registries, enforce our contracts, and maintain our records. Entrepreneurs are now discovering which roles carried out by third parties such as governments and firms will be shifted towards blockchain-based decentralised networks.

Blockchain is now being applied to trace goods along supply chains, to give control of medical records to patients, and to create decentralized identities that help people move across borders.

What does blockchain mean for Australia’s manufacturing industry?

At first glance manufacturers produce physical products and then transport those goods to consumers. More deeply, the manufacturing process is heavily reliant on databases of information in multiple directions along their supply chains. This is especially true for advanced manufacturing. When goods and inputs move, information about them must move too. This includes information about the provenance of sub-components and intermediate parts, information about the integrity of rare products prone to counterfeit, and information about ethical standards in production.

It’s harder to produce this supply chain information than you think. The information must be coordinated between hundreds of parties in the supply chain. Most of those parties don’t know or trust each other. And this information is still often paper-based or siloed within organisational hierarchies. The result is a trail of information about manufactured goods that is prone to error, fraud and loss. And these problems only get worse as supply chains get longer in a globalised world, and manufactured goods become more complex.

Blockchain technology presents a different way to govern supply chain data that centres on the movement of the good itself. Rather than passing pieces of paper between supply chain participants to track goods, information can be recorded in a decentralised blockchain. In practice goods are given a digital representation. Then as the goods move, information about them is timestamped in an immutable blockchain. Importantly this information is stored outside of organisational boundaries, making blockchain an alternative mechanism to solving the age-old problems of provenance and quality. What information is stored in a blockchain could be the historical location of a good, who produced it, how it has been stored, and who has finance on the goods.

Supply chain information extends beyond a single supply chain. To produce a complex product involves first mining raw materials, transforming those into intermediate parts, before manufacturing of the final good. Blockchains are critical here because they can track goods and components across multiple supply chains, giving more visibility and traceability deeper into complex manufactured goods.

Blockchain supply chains will leverage other frontier technologies such as the Internet of Things (IoT). Containers and products will contain sensors to record information such as GPS location and temperature. This information won’t be sent to a centralised party, but recorded cryptographically into a blockchain. This information can help consumers in verifying genuine products, assist producers in creating analytics of consumer demand and ensuring their inputs are legitimate, and governments in ensuring compliance with domestic rules and regulations.

The first and most obvious application of blockchain in supply chains has been in agricultural products such as wine, meat and seafood. The common characteristic of these goods is that they are information-rich. Information about their provenance and stewardship is often hard to verify by observing the final goods, but radically affects the price that consumers will pay.

This means the next wave of applications is likely to be other high-value information-high goods. Goods that are highly-customised, such as 3D printed medical devices, aeroplane parts and pharmaceuticals, are perfectly poised to apply blockchain technology.

Blockchain in advanced manufacturing is more than just tracking goods once they’ve been produced. We can use blockchains to coordinate the highly valuable digital files that sit behind many of these products. How can you ensure that the CAD file being 3D printed was the one originally intended? Similarly, blockchains are being used for intellectual property rights, helping to ensure compliance in an increasingly digital world.

In the physical manufacturing process itself blockchain can be used to record information about the lifecycle of manufacturing equipment. We can now have more cost-efficient and credible auditable ledgers that extend beyond organisational hierarchies.

What we have proposed here is a general movement away from intermediaries being trusted to maintain information about goods and their production, towards information governance through decentralised blockchain platforms. To be sure, many of these applications are in the trial and experimental phase. But they represent an early fundamental shift in how we organise information across the entire manufacturing supply chain.

Why Blockchain Technology Could Be the Key to Solving the Developing World’s Biggest Problems

With Darcy Allen

The core of the free market explanation for global poverty is simple and compelling: much of the world’s poor are poor because of institutional failure.

The court systems that service the bottom billion are unreliable or hard to access. The governments impose extractive taxation. The bureaucracies are corrupt.

And some institutions are simply missing in the developing world. A lack of reliable identity services makes it hard to access financial markets. A lack of property titles, as Hernando de Soto famously wrote, makes it hard to use the capital embodied in homes.

Corruption and Monopolies

These explanations are all true. But the free market response to global poverty is insipid to the point of uselessness. Faced with evidence that institutions in developing countries are corrupt, classical liberals respond: well, don’t be so corrupt.

There are other responses, of course. We sometimes adopt the Washington Consensus approach—use the levers of political globalization to force reform on unwilling populations. Or maybe we just hope for a revolution that might turn out liberal. Neither alternatives have good track records.

The problem here is that institutions tend to be monopolies. One country has one court system, one bureaucracy in charge of property titles, one authority giving out birth certificates. To get better institutions, we have to replace the corrupt old ones, and that’s hard to do, especially given the intransigence of rent-seekers who benefit from them.

Institution Innovation

What the developing world needs is a technology of institutions—a way not to replace institutions but to create more of them, experimentally and entrepreneurially.

This is what we see in the blockchain. Blockchain technology is an institutional technology that allows multiple institutions to operate in one place. It is perfectly suited to hostile institutional environments.

There’s been a lot of work, unsurprisingly, on individual blockchain applications that might be helpful for the world’s poor: supply chains, democratic governance, and identity management for example. With these applications, blockchain might allow poor countries to leapfrog some of the stages of development—a poor country might skip the creation of the centralized institutions characteristic of the rich world and instead adopt immediately decentralized ones.

These applications don’t need to replace their competitors, and they are virtually impossible for the beneficiaries of the old order to prevent.

But we think blockchain technology offers something more fundamental than these specific applications.

It offers the possibility of creating new institutions—new algorithmic legal systems, contract dispute resolutions systems, identity technologies, mutual welfare and insurance, and public goods provision—in competition with the existing set of institutions.

For instance, the invention of a smart contracting platform could compete with existing court systems, helping to overcome the problems of hold-up or counterparty risks. The contracting parties to decide which institutional structure they wish to use—the terrestrial one or a near-infinite number of new digital alternatives.

These applications do not need to replace their competitors to function. And they are virtually impossible for the beneficiaries of the old order to prevent.

Institutional Layering

We call this process institutional layering. Blockchain institutions co-exist with existing institutions, effectively layering on top.

Blockchain entrepreneurs in developing economies don’t require international aid agencies or development experts to define economic problems and try to solve them. Rather, they apply their entrepreneurial judgment and skills to define institutional problems and use blockchains to design and test new institutional solutions.

William Easterly famously outlined the distinction between “planners” and “searchers” in economic development. Development economics has been plagued by planners implementing top-down institutions that don’t match local conditions and have a raft of unintended consequences.

Instead of working within the existing institutions, entrepreneurs can use blockchain to operate more effectively.

The capacity of entrepreneurs to search, however, is constrained by the transaction costs they face and the technologies they have available. Rather than propelling institutional change through centralized planners (whether it be through conquest or special economic zones), blockchain enables a new decentralized process of search.

Rather than forming businesses within the existing institutions, entrepreneurs can use the blockchain to more effectively operate on the level of the institutions themselves. Blockchain enables institutional entrepreneurs to search by operating on the governance or “protective-tier” level of entrepreneurship.

Now entrepreneurs can search, discover, and deploy new governance mechanisms. They can attract users by better economizing on transaction costs than alternatives.

Polycentric Institutions

The process of institutional layering will also be more polycentric. Rather than having centralized institutions attempting to fit over broad groups of people within a geographical nation-state, entrepreneurs will, over time, discover the necessary levels of institutional rules within regions and across borders.

Another ongoing problem of institutional change in the developing world is aligning formal institutions with the underlying informal norms. Blockchain-based institutional layering—using governance approaches developed by local entrepreneurs—might better match the underlying norms, or what James C. Scott describes as metis.

New, digital, uncensorable, trustful institutional technologies open up enormous opportunities for decentralized economic development.

Because blockchain institutions are built from the bottom-up and draw on local entrepreneurial knowledge, we might see greater levels of institutional stickiness, where formal blockchain institutions better match underlying norms and therefore are embedded and longer-lasting.

Our argument risks techno-utopianism. We are confident that blockchain—or successor distributed ledger technologies not yet invented—might solve several institutional problems within the developing world. It will not, of course, solve all of them.

Nevertheless, the invention of a class of new, digital, uncensorable, trustful institutional technologies opens up enormous opportunities for decentralized economic development.

And it allows the same entrepreneurial creativity that has driven prosperity in the rich world to be turned to the causes of poverty in the developing world.

The use of knowledge in computers: introducing nanoeconomics

With Sinclair Davidson, Jason Potts and Bill Tulloh. Originally a Medium post.

In his 1945 essay “The Use of Knowledge in Society”, Friedrich Hayek first drew attention the knowledge problem. Information is distributed throughout an economy. No central planner can effectively bring it together.

Hayek, obviously, was talking about a human economy, where people exchange with people. But machines suffer from knowledge problems too. This is the domain of nanoeconomics — which we suggest is the study and evaluation of the economics of machine systems.

Hayek in the machine

Nanoeconomics is about human-machine exchange, and machine-machine exchange. It is the economics of distributed ledgers and artificial intelligence, of object-capability programming and cybersecurity, of ‘central planning’ in the machine, and of ‘markets’ in the machine.

As we’ve come to understand blockchains and other distributed ledger technologies as an institutional technology, we’ve also learned that not only can blockchains coordinate and govern decentralised human economies (as governments, firms and markets do) but they can coordinate and govern decentralised machine economies (or human-machine economies).

This extends what Hayek called catallaxy — the spontaneous order of the market — from the market coordination of human action to the coordination of human-to-machine and machine-to-machine economies.

Nanoeconomics is not a new idea. In their Agoric papers published in 1988, Mark Miller and K. Eric Drexler developed the idea of a computational system as a space for economic exchange. The development of object-oriented programming has created software agents, which vie for scarce resources in the machine. But right now, these agents are governed through planning, not markets. Miller and Drexler suggested an alternative: a market-based computation system. In this system:

machine resources — storage space, processor time, and so forth — have owners, and the owners charge other objects for use of these resources. Objects, in turn, pass these costs on to the objects they serve, or to an object representing the external user; they may add royalty charges, and thus earn a profit.

With global computers like the smart-contract platform Ethereum we now have the bones of such a market-based computational architecture.

Nor is the idea of an analytical layer below microeconomics a new idea. Kenneth Arrow used the word nanoeconomics for the study of single buying and selling decisions. But that line of research has been subsumed into behavioural and now neuroeconomics. Alternatively it is used to describe the economics of nanotechnology.

But in an age where we deploy digital, quasi-autonomous agents to act on our behalf, and where the traditional economic problems of opportunism, asset specificity and bounded rationality are intimately tied into cybersecurity and digital services, we have to drive our economic analysis — and our institutional choices — into the machine.

Nanoeconomics is the study of an economy of software agents, using market institutions and property rights to order computation and bid for computational resources. It is the study of choices and market exchange that occur between computational objects in object-oriented software architectures, and which are economically coordinated through blockchain infrastructure.

As Miller and his colleagues have pointed out, a key problem with ‘centrally-planned’ computation are the implications for computer security. A decentralised software economy would instead seek to operationalise tradable property rights for access to objects through the principle of least authority.

Contract theory, not choice theory

Nanoeconomics is not simply a new field of economics — it is a significant extension. Where the choice-theoretic branch of economics has managed to drive its analysis down into the brain, the contract-theoretic branch has stopped at the level of human-to-human exchange.

What do we mean by choice-theoretic and contract-theoretic? Choice theory studies why people make the choices they do. This branch has traditionally been split into macroeconomics (the study of the aggregate economy) and microeconomics (the study of individual market choices).

In recent decades many economists have sought to drive their analysis deeper into the brain. Why do they have different preferences? Behavioural economics applies psychology to economics, and even more recently neuroeconomics applies biology. The choice-theoretic branch of economics goes: macro, micro, behavioural, neuro.

The contract-theoretic branch is the economics of Ronald Coase, James Buchanan, Oliver Williamson, Friedrich Hayek, and Elinor Ostrom. This branch looks at exchanges (that is, contracts) and the human institutions we have devised to constrain or facilitate those exchanges. Firms, markets, governments, clubs and commons (and now blockchains) are institutional environments to make exchanges, sign contracts, and otherwise pursue economic goals.

Contract-theoretic economics starts with constitutional economics — the macro level structuring of political and economic choices. It applies a transaction cost approach to microeconomic analysis. And with nanoeconomics we can start look at machine agents as economic actors, making exchanges — and acting opportunistically.

As more and more of the economy becomes machine-mediated, we need to worry about the security and efficiency implications of centrally-planned machine economies. But the underlying knowledge problems are general.

We’ve previously argued that blockchains are constitutional protocols for catallactic ordering. Nanoeconomics is about how they can not only facilitate improved decentralised economic coordination for humans, but also for machines.

Should I use a blockchain?

With Sinclair Davidson and Jason Potts. Originally a Medium post.

Blockchain as a business model can be imagined in one of two ways. It can be thought of as being a new general purpose technology. This category of technologies includes electricity, transistors, computers, the internet, mobile phones, and so on. To this way of thinking a blockchain can be represented as the next generation of the internet.

But if this is how people come to think of a blockchain we believe that many are going to be disappointed. Here the blockchain would be — what economists call — a factor augmenting technology. This is the standard economic story about how technology drives economic growth. People adopt a new technology because it reduces the productions costs associated with producing a given output. Technology ‘economises’ on scarce resources. We do more with less. This is the better-stronger-faster-cheaper model that we have come to associate with new technology.

But there is a problem with this approach to blockchains.

It is not immediately obvious that a blockchain is better-stronger-faster-cheaper for many general purpose uses. If managers are looking for improvements to their back room operations they will likely be underwhelmed by what a blockchain has to offer. There are many existing database software solutions that will very likely outperform a blockchain.

Another way to think about blockchains is as an institutional technology. As The Economist magazine insightfully suggested some years ago the blockchain is a trust machine. We have argued that blockchains industrialise trust. This is where the gains to using blockchain technology originate — not that it economises on production costs, but that it economises on transactions costs — especially trust.

When Satoshi Nakamoto solved the Byzantine general’s problem he also provided a solution to what economists call the coordination problem. Historically economists have recommended the price system, bureaucracy and managerial hierarchy as solutions to coordination problems. Now we also have the blockchain.

That blockchains are fundamentally an institutional rather than a technological innovation is not mere semantics. This distinction matters because it focuses attention on what is actually driving the creative-destruction this innovation generates.

What has changed is the technology of economic coordination and governance.

In the real world there is a trade-off between the price system and bureaucracy and hierarchy. The price system provides clear incentives — prices and profits determine what should be produced, how it should be produced, and who will produce it. In bureaucracy and hierarchy, however, those high-powered incentives are missing. But large scale economic activity generates large transaction costs and a lack of trust means that prices and profits can’t weave their magic.

This is where blockchains have a competitive advantage — the decentralised ledger technology provides a platform for coordination where transactions costs are dramatically reduced and trust industrialised. In an environment of complex economic activity that previously relied on bureaucracy and management we can now have prices and profits doing their magic.

Those adopters who think blockchain is just another backroom business tool are missing the main game. The blockchain is going to be your business model.

Opportunities for crypto-havens to capture business

With Sinclair Davidson and Jason Potts.

Blockchain technology is set to drive a new era of global public policy competition. In May 2018, the premier of Bermuda, David Burt, announced to the 8,500 attendees of the Consensus blockchain and cryptocurrency conference his country’s new Digital Asset Business Act and Initial Coin Offering Act. This legislation is intended to establish Bermuda as a premier destination for blockchain business by providing regulatory certainty around new business models.

But Bermuda is hardly the only jurisdiction seeking to attract blockchain firms. Singapore, Switzerland, Dubai, Estonia, subnational jurisdictions and dependencies like Illinois, Zug, the Isle of Man and Gibraltar are all positioning themselves to capture blockchain services. In October 2017, the then prime minister of Slovenia, Miro Cera, declared the country was “setting itself up as a blockchain-friendly destination.”

What we are seeing right now is an aggressive policy-driven grab to become a world leader in blockchain technology, and to capture some of the enormous value that this can unlock. Where once we saw global tax competition – as small nations attracted investment with business-friendly tax and regulation policy – now we are able to watch the green shoots of global blockchain competition. Blockchains are a unique technology, and that uniqueness presents some unusual public policy challenges. They offer us a new platform to organize economic activity: to make trades, to arrange production processes, to store information about assets and property ownership. Blockchains provide an economic infrastructure on which parallel technological developments, such as artificial intelligence and machine learning, the Internet of Things, 5G, and automation, can be built.

We expect to see a great deal of economic activity that currently takes place in firms, in markets, even in government, to be displaced by distributed ledger technology. Blockchains will tie organizations together that have currently cooperated only through market exchange, or by the force of regulation. It will lead to demergers, as large firms realize that a decentralized ledger is an alternative to complex multidivisional corporate structures.

But we have spent hundreds of years building complex taxation and regulatory systems around these institutions. The dominance of large firms has led governments to impose anti-trust laws. Principal-agent problems between owners and firm managers has led to the introduction of complex schemes of directors duties and manager controls. Securities law is built around the dominance of the public offering, taxation law around a sharp distinction between currency and other assets, and labor law around the employer-employee divide.

As a new technology of governing economic activity, blockchain applications pull at the threads of all these traditional regulatory frameworks. Globally, there are still deep uncertainties over the most basic questions around cryptocurrencies, such as when they are taxed, and as what: currency or security? The initial coin offerings that have brought so much money into the industry exist in a legal gray area almost everywhere in the world.

Blockchains are an incredibly young technology – just ten years old. Distributed autonomous organizations, decentralized labor markets, blockchain-secured intellectual property assets and blockchain-enhanced international trade will raise complex issues about fundamental regulatory structures, like labor, competition, and companies law – structures which have been reasonably fixed for the better part of a century. As more applications around economic problems, such as identity management, charities, healthcare, finance and global trade, are developed and introduced into the real world, they will face a spiraling number of regulatory and policy barriers that will need to be overcome. We face decades of regulatory uncertainty and demand for reform.

This is where crypto-friendliness matters. Crypto-friendliness does not mean the government needs to subsidize, plan or control blockchain technology. The sector is awash with funds: a happy by-product of the enormous speculative investment in cryptocurrencies that has occurred over the last eighteen months. No government planner could predict how this technology is going to develop, and given its global nature, no regulator has a hope of controlling it.

But blockchains do require governments to facilitate adoption. Because of the many ways blockchain use cases interact with existing regulatory frameworks they will need the help – or at least the acquiescence – of public policymakers to reform those frameworks to suit. The biggest regulatory risk in the blockchain space is uncertainty. Right now, those uncertainties are about how crypto-assets will be taxed, how and when they will be treated as securities, and the levels of disclosure around anti-money laundering and know-your-customer rules.

Governments that want to attract blockchain firms to their jurisdictions need to be resolving those uncertainties as soon as possible.

A crypto-friendly government is one which is not only focused on resolving current uncertainties but is able to credibly commit to facilitating the sorts of regulatory reforms needed in the future. Technological change is unpredictable. We do not know what blockchain applications are going to be the most successful and disruptive. Consumer demand is unpredictable. Governments should ensure, as far as possible, that regulation is both predictable and adaptive, that shape-changes in regulatory regimes do not occur, and that yet there is adequate space for entrepreneurial experimentation.

Which governments are likely to be the most crypto-friendly? At the first instance, the governments which have already demonstrated themselves as business-friendly environments are obvious candidates for blockchain friendliness. The ingredients of long-run economic growth – liberal, responsive institutions, the rule of law, limited government, regulatory modesty, and low taxes – are as important for blockchain firms as they are for other industries. The Isle of Man, for instance, has long been an established global leader in gambling and e-gaming, thanks to a deliberate effort on its part to establish welcoming and certain public policy. The Isle of Man is now a thriving site of blockchain innovation. As this suggests, blockchain technology presents a historically significant opportunity for the Cayman Islands, and any other jurisdiction which has a reputation for business-friendly policy. The last few decades of global tax competition have shown that smart policy can shape the geography of global capitalism just as strongly as labor or natural resources. Blockchains are a decentralized network but their developers, entrepreneurs and users exist in a real world, subject to real laws. Crypto-havens can capture that business.

Blockchains and constitutional catallaxy: an EOS case study

With Alastair Berg. Originally a Medium post.

The EOS mainnet launched earlier this year.

In EOS we are witnessing the emergence of what Ludwig von Mises and Friedrich Hayek would recognise as constitutional catallaxy — open source constitutional orders in which participants are continually developing the rules of the game even after the game has started.

EOS operates under a Delegated Proof of Stake (DPoS) consensus mechanism, with 21 Block Producers (BPs) overseeing the validation of transactions. As an open source constitutional order, the jurisdiction of these BPs has been guided by de jure constitutional arrangements. In the pre-launch phase of EOS, documentation was drafted and debated outlining an EOS Constitution, while users were to include a hash of that document in their transactions to acknowledge their understanding and acceptance of it.

However, open source constitutional orders like EOS also have stakeholders who may exercise de facto authority in the absence of formal procedural rules or technical constraints.

The launch of the EOS mainnet provides examples of how de jure and de facto constitutional arrangements can diverge. While no token holder vote has taken place on the EOS Constitution (via their proxies — BPs), de factosovereignty was quickly exercised through the banning of seven (and later many more) accounts following a conference call between BP representatives and a body known as the EOSIO Core Arbitration Forum (ECAF).

As a result of this call, BPs chose to exercise de facto sovereignty and freeze these accounts. Only retroactively did this dispute resolution body ECAF issue a statement which indicated their support of the actions of BPs.

Similarly, 6 weeks after launch, an announcement was made to fundamentally change the way in which economic value is distributed across the EOS protocol. On July 28 Brendan Blumer, CEO of block.one (the organisation which developed the EOS mainnet), announced changes in the way EOS inflation is to be allocated. This will see new EOS tokens being distributed to users who stake tokens and vote for BPs, in addition to the rewards BPs receive for overseeing the validation of transactions.

These actions have drawn support as well as opposition. Some have called it a successful demonstration of off-chain governance, while some see it as jurisdictional overreach by emergent institutions.

In previous articles, we have argued that blockchains are a lot like countries. These (usually) open source protocols are constitutional orders which define how individuals interact and transact — complete with their own currencies, property, laws, corporations and security systems.

Blockchains, along with nation states, attempt to coordinate action in a world of incomplete information and opportunism — while computer scientists and economists have different vocabularies, Byzantine fault tolerance and robust political economy are the same thing.

Systems of governance for blockchain protocols are not new — the genius of Satoshi Nakamoto was to allow the Bitcoin network to reach consensus when two equally valid blocks are presented by miners, in effect solving the double-spend problem.

Yet now we can observe the emergence of — and have debate over — other governance arrangements in blockchain protocols. (Who writes and has permission to change the law (code), who enforces the rules, the role and method of voting, the role of developers and token holders, on-chain and off-chain governance etc).

What’s interesting is that these are analogous to the debates that individuals had during the emergence of nations. Consider the United States. With little to guide them but the musings of philosophers and radical thinkers, individuals grappled with a myriad of competing principles and interests as they set the ground rules for how their new constitutional order was to be governed.

Previously, constitutional orders emerged from revolution, civil war, conquest and other usually violent means — much like the constitutional order that emerged in the 13 American colonies.

In the real world, the emergence of institutions — as well as the jurisdiction which they exercise power over — can take many years after their formal establishment. The Supreme Court of the Unites States has the now familiar power of judicial review, evaluating the constitutionality of legislation and executive action. However it was only 16 years after it was established that the Supreme Court granted itself the power to declare acts of Congress unconstitutional as a result of Marbury v. Madison. Similarly, the role of the President has significantly expanded over time, with the term the Imperial Presidencyaccounting for the increased powers gradually vested in the US executive since the administration of George Washington.

The US Constitution has similarly been amended, challenged and otherwise interpreted in a myriad of different ways over its lifetime, demonstrating a real-world divergence and interaction of de jure and de facto constitutional arrangements.

Constitutional catallaxy

Likewise, blockchains are constitutional orders governed by social norms as well as technical constraints. The de jure constitutional order which governs how BPs represent EOS token holders, and the ways in which disputes are resolved, are ultimately subject to the exercise of authority by those who have the means.

What we are seeing is a process of constitutional entrepreneurism — constitutional catallaxy — in the establishment of new economies. The institutions that coordinate activity in these economies change and adapt to both the technological limitations built into the protocols, as well as the mutual expectations and power of interacting stakeholders.

The rational crypto-expectations revolution

With Sinclair Davidson and Jason Potts. Originally a Medium post.

Will governments adopt their own cryptocurrencies? No.

Will cryptocurrencies affect government currencies? Yes.

In fact, cryptocurrencies will make fiat currency better for its users — for citizens, for businesses, for markets. Here’s why.

Why do we have fiat currency?

Governments provide fiat currencies to finance discretionary spending (through inflation), control the macroeconomy through monetary policy, and avoid the exchange rate risk they would have to bear if everybody paid taxes in different currencies.

As George Selgin, Larry White and others have shown, many historical societies had systems of private money — free banking — where the institution of money was provided by the market.

But for the most part, private monies have been displaced by fiat currencies, and live on as a historical curiosity.

We can explain this with an ‘institutional possibility frontier’; a framework developed first by Harvard economist Andrei Shleifer and his various co-authors. Shleifer and colleagues array social institutions according to how they trade-off the risks of disorder (that is, private fraud and theft) against the risk of dictatorship (that is, government expropriation, oppression, etc.) along the frontier.

As the graph shows, for money these risks are counterfeiting (disorder) and unexpected inflation (dictatorship). The free banking era taught us that private currencies are vulnerable to counterfeiting, but due to competitive market pressure, minimise the risk of inflation.

By contrast, fiat currencies are less susceptible to counterfeiting. Governments are a trusted third party that aggressively prosecutes currency fraud. The tradeoff though is that governments get the power of inflating the currency.

The fact that fiat currencies seem to be widely preferred in the world isn’t only because of fiat currency laws. It’s that citizens seem to be relatively happy with this tradeoff. They would prefer to take the risk of inflation over the risk of counterfeiting.

One reason why this might be the case is because they can both diversify and hedge against the likelihood of inflation by holding assets such as gold, or foreign currency.

The dictatorship costs of fiat currency are apparently not as high as ‘hard money’ theorists imagine.

Introducing cryptocurrencies

Cryptocurrencies significantly change this dynamic.

Cryptocurrencies are a form of private money that substantially, if not entirely, eliminate the risk of counterfeiting. Blockchains underpin cryptocurrency tokens as a secure, decentralised digital asset.

They’re not just an asset to diversify away from inflationary fiat currency, or a hedge to protect against unwanted dictatorship. Cryptocurrencies are a (near — and increasing) substitute for fiat currency.

This means that the disorder costs of private money drop dramatically.

In fact, the counterfeiting risk for mature cryptocurrencies like Bitcoin is currently less than fiat currency. Fiat currency can still be counterfeited. A stable and secure blockchain eliminates the risk of counterfeiting entirely.

So why have fiat at all?

Here we see the rational crypto-expectations revolution. Our question is what does a monetary and payments system look like when we have cryptocurrencies competing against fiat currencies?

And our argument is that it fiat currencies will survive — even thrive! — but the threat of cryptocurrency adoption will make central bankers much, much more responsible and vigilant against inflation.

Recall that governments like fiat currency not only because of the power it gives them over the economy but because they prefer taxes to be remitted in a single denomination.

This is a transactions cost story of fiat currency — it makes interactions between citizens and the government easier if it is done with a trusted government money.

In the rational expectations model of economic behaviour, we map our expectations about the future state of the world from a rational assessment of past and current trends.

Cryptocurrencies will reduce government power over the economy through competitive pressure. To counter this, central bankers and politicians will rail against cryptocurrency. They will love the technology, but hate the cryptocurrency.

Those business models and practices that rely on modest inflation will find themselves struggling. The competitive threat that cryptocurrency imposes on government and rent-seekers will benefit everyone else.

It turns out that Bitcoin maximalists are wrong. Bitcoin won’t take over the world. But we need Bitcoin maximalists to keep on maximalising. The stability of the global macroeconomy may come to rely on the credible threat of a counterfeit-proof private money being rapidly and near-costlessly substituting for fiat money under conditions of high inflation.

A hardness tether

Most discussion about the role of cryptocurrency in the monetary ecology has focused on how cryptocurrencies will interact with fiat. The Holy Grail is to create a cryptocurrency that is pegged to fiat — a so-called stable-coin (such as Tether or MakerDAO).

But our argument is that the evolution of the global monetary system will actually run the other way: the existence of hard (near zero inflation, near zero counterfeit) cryptocurrency will tether any viable fiat currency to its hardness. No viable fiat currency will be able to depart from the cryptocurrency hardness tether without experiencing degradation.

This in effect tethers fiscal policy — and the ability of politicians to engage in deficit spending in the expectation of monetising that debt through an inflation tax — to the hardness of cryptocurrency.

The existence of a viable cryptocurrency exit tethers monetary and fiscal policy to its algorithmic discipline. This may be the most profound macroeconomic effect of cryptocurrency, and it will be almost entirely invisible.

Cryptocurrency is to discretionary public spending what tax havens are to national corporate tax rates.

Supply Chains on Blockchains

With Sinclair Davidson and Jason Potts

Blockchain technology is shaping up as one of the most disruptive new technologies of the 21st century, facilitating an entirely new decentralised architecture of economic organization. While still experimental, it is disrupting industry after industry, beginning with money, banking and payments, and now moving through finance, logistics, health, and across the digital economy. These waves of innovation are being driven by both new entrepreneurial startups as well as by industry dominant firms reimagining and rebuilding their business models and services to use blockchain technology. Trade platforms and supply chains are shaping up as the major use case for blockchain technology, and we explain here how this may lead to a second phase of globalisation.

Breakthroughs in the technology of trade can have far-reaching consequences. Sailing ships and steam ships, refrigeration and aircraft were all watersheds in the making of the modern world, but two technologies of trade delivered us the modern era of globalization: these are (1) the shipping container, and (2) the WTO (formerly known as the GATT).

The invention of the shipping container in 1956 led to a revolution in international trade, birthing a new phase of globalisation. Blockchains, invented in 2009, promise a similar revolution. Blockchains offer a fundamental architectural change in the way firms and governments manage international trade, with enormous efficiency and productivity gains.

But, just as the shipping container required significant investment to bear fruit—and came up against the interests of the unions, regulators and ports—blockchain-enabled trade will require substantial upfront investment in new systems and will inevitably challenge existing interests. In the 1950s the shipping container was the solution to the problem of the high expense in money, time, and security to load cargo in and out of ships. Handling costs were high, operations were slow, and theft was rife.

Today the constraints on trade consist of the ever-increasing complexity of the data, records, payments and regulatory permissions that accompany goods as they travel across the world. Every good moving along a supply chain is accompanied by a data trail, often still as paperwork, to track bills of lading, invoices of receipt and payment, origin, ownership and provenance, as well as compliance with vast schedules of trade prohibitions and environmental regulation, taxes and duties.

The shipping container is a physical coordination technology, while the WTO is an institutional coordination technology. At the Blockchain Innovation Hub we believe that blockchain technology – as tradetech – is shaping up as the third great technology of trade.

The Cost of Information and Trust

Blockchain technology can solve a major and growing problem with the global trading order – namely the problem of information. Every time a good or service moves, information moves with it. The quantity of information associated with each product continues to grow, and the costs of dealing with this information, from compliance, auditing, verification – trust, in a word – is becoming a greater and greater share of the costs of the global trading system.

This information includes provenance and inputs – the information on a label. It includes trade-finance, bills of lading, shipping and handling information, security clearance – the commercial and administrative information. It includes the documentation of where it’s been and where it’s going, and who has handled it and who hasn’t. And it includes all the information that each country requires in relation to customs and duties, biosecurity, labour and environmental regulations, compliance with various treaties – a vast rigmarole of auditing and compliance, each of which is necessary, desirable and costly. With each day, the information burden increases, not decreases.

As the information cost of trade increases, it is not simply enough to digitize everything, because the real problem is that we need to be able to trust the information that is there.

Tradetech

Globalisation 2.0 will be built on tradetech, and the crucial infrastructural component of tradetech is blockchain. Blockchain technology, which is a distributed, append-only, peer-to-peer, trustless secure ledger, is almost custom-made for trade-tech. It provides an infrastructural platform upon which to build a new information architecture for globally tradable goods – and to do so in a way that is fully digital, tamper-proof, low-cost, end-to-end secure, verifiable, transparent, scalable and computable. What cryptocurrencies did for money tradetech will do for globalization.

Tradetech will integrate the benefits of fintech into trade networks. Crypto-based models of payments, trade finance, insurance and other risk management tools will be automated. Tradetech will integrate the benefits of regtech into trade networks. Verification and compliance with local regulations will be automated. Tradetech will power-up logistics technologies with blockchain affordances such as smart contracts, decentralized autonomous organisations (DAOs), and the full technology stack that includes AI integration.

So we think of blockchain as a next-generation infrastructural technology for the global movement of goods and services. Service exports have the same constraints with respect to compliance with certification, credential verification, and quality standards assurance. These same problems apply generally to the movement of people too. We are still yet to weave together a seamless global system of identity documents, education and trade certification and permissions, and taxation and other public liabilities.

Example: Benefits for Australia

Tradetech facilitated supply chains could to bring significant advantages to Australia, and her trading partners. This is win-win because there are both consumers and producers on each side.

For Australian exporters, there are at least two obvious advances. Tradetech facilitated Australian Agriculture will significantly boost the quality of provenance claims as to origin and quality of product. When this transparent verifiable information passes at much lower cost to final consumers, more of that assurance value passes back to suppliers, boosting primary producer income.

We are starting to see this already with start-ups in the primary export industry, for instance with Beef-ledger, Agridigital and Grainchain. We will also likely see the benefits of similar assurance in advanced manufacturing, such as in aerospace, medical devices, pharma and other high value bespoke manufacturing where quality is paramount and certification is costly. Or in other areas that rely heavily on intellectual property, such as creative industries.

Blockchain based tradetech will benefit producers and consumers by lowering the cost of providing and processing high value information that rewards legitimate quality production and minimizes
rent-extraction along the way.

Crypto Free Trade Zones

Blockchain-based next-generation trade infrastructure opens the prospect of a next generation of crypto free trade zones. These may overlay existing trade zones – within bilateral or multi-lateral zones – with a standard protocol for information handling. This would lower the transactions costs of trade, which economic theory predicts would increase the quantity of trade, and therefore value creation.

But blockchain trade areas could also build on private supply chains and infrastructure, as with consortia such as the IBM-Maersk-Walmart alliance, or with the recently announced adoption by FedEx of blockchain technology. This is the difference between say email (an open standard) and Facebook (a proprietary model). The strength of the closed network model is that it incentivizes investment. But it creates power, and invariably requires regulation to constrain that power. And regulation in turn stifles innovation.

We need to start thinking about how we want free trade to evolve in the blockchain era. Global open standards should be our ambition, because this brings the maximum prospect for growth and innovation. But open standard protocols are challenging to get started, because it can stumble on a coordination problem at the outset. This is why in order to build the next generation of globalization on blockchain infrastructure we will need to solve the open standards coordination problem.